[image: image1.png]
Using Driver Install Frameworks for Applications (DIFxApp) - 2

Using Driver Install Frameworks for Applications (DIFxApp) Version 2.0
April 7, 2005
Abstract

This white paper provides information about Microsoft® Windows® Driver Install Frameworks for Applications (DIFxApp). It explains how providers of driver packages can use version 2.0 of DIFxApp to install driver packages that are associated with applications in a Microsoft Windows Installer (Windows Installer) installation package.
This information applies for the following operating systems:

Microsoft Windows codenamed “Longhorn”

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

Future versions of this preview information will be provided in the Windows Longhorn Driver Kit at:

http://www.microsoft.com/whdc/driver/ldk/default.mspx

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

4How DIFxApp Works

6Operation of MsiProcessDrivers

6Installing Driver Packages

7Uninstalling Driver Packages

7Uninstalling PnP Function Drivers

8Uninstalling Class Filter Drivers

8Associating Services, Driver Packages, and Applications

9Reversing System Changes

10Cleaning Up After an Install or Uninstall

10Uninstalling a Driver Package by Using an Entry in Add or Remove Programs

10Logging Information and Errors

12Updating Versions

12Support for Quiet Installations

12Installing Unsigned Driver Packages in Legacy Mode

13Installing Unsigned Driver Packages for Testing Purposes

15Removing Files When Uninstalling a Driver Package

15Authoring a Windows Installer Installation Package That Uses DIFxApp

16Authoring a Windows Installer Installation Package Using DIFxApp.msm

17Authoring a Windows Installer installation Package Using DIFxApp.wixlib

21MsiDriverPackages Custom Table Schema

23Call to Action and Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred

 2004 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This paper provides information about the Microsoft® Windows® Driver Install Frameworks for Applications (DIFxApp) version 2.0, which is a a component of the Microsoft Windows Driver Install Frameworks (DIFx). With DIFxApp, Windows Installer can be used to install driver packages that are associated with applications in a Windows Installer installation package. DIFxApp is designed to be used by vendors who either already have a Windows Installer installation package for their applications or plan to create one. For each type of driver that DIFxApp supports, you only need to create one installation package that will install on all the Windows versions that support that driver type.
DIFxApp supports installing signed Plug and Play (PnP) function drivers and signed class filter drivers on Windows 2000 and later. DIFxApp can also be configured in legacy mode to install unsigned PnP function drivers and unsigned class filter drivers on Windows 2000 and later. In legacy mode, DIFxApp will also install driver packages that have missing files.
For a complete list of driver package requirements and related installation considerations, see the white paper "Requirements for Driver Packages That Are Used with the Driver Install Frameworks (DIFx) Version 2,0 Tools".

DIFxApp maintains a driver-package-applications list that associates the driver package with the applications that install the driver package. DIFxApp uses this information to determine whether to uninstall a driver package when an associated application is uninstalled. This feature is not supported for PnP function drivers on Windows Longhorn.
For class filter drivers, DIFxApp also maintains a service-driver-packages list that associates a service with the driver packages that support the service. When the currently installed driver for a service is uninstalled, DIFxApp uses this information to update the driver installed for a service or to remove the service.
DIFxApp does not maintain a service-driver-packages list for PnP function drivers. When DIFxApp installs a PnP function driver, DIFxApp uses the standard PnP and Setup mechanisms to select and install the best compatible driver for the PnP device. When DIFxApp uninstalls a PnP function driver, it selects and installs the best compatible driver from the other drivers installed on a computer. If a compatible device driver is not available, DIFxApp removes the device from the device tree.

For more information about how DIFxApp associates services, driver packages, and applications, see “Associating Services, Driver Packages, and Applications” later in this paper.

For information about the operation of DIFxApp, see “How DIFxApp Works” later in this paper.

For information about authoring a Windows Installer installation package that uses DIFxApp, see “Authoring an Windows Installer Installation Package That Uses DIFxApp” later in this paper.

For information about DIFx, see “Driver Install Frameworks” in the Microsoft Windows Driver Development Kit (WDK) and go to http://www.microsoft.com/whdc/hwdev/driver/hwuxtools.mspx.
You can obtain the DIFxApp tool at http://www.microsoft.com/whdc/driver/install/DIFXApp.mspx.

Tip

If there is no need to install drivers and applications in the same installation package, the Microsoft Driver Package Installer (DPInst) can be used instead of DIFxApp. DPInst simplifies and customizes the installation of drivers packages for devices that are installed on a computer (commonly referred to as a hardware-first installation) and devices that are not yet installed on a computer (commonly referred to as a software-first installation). For information about DPInst, see the white paper "Using the Driver Package Installer (DPInst) Version 2.0".
How DIFxApp Works

DIFxApp install and uninstall operations are based on the following DIFxApp-specific items in a Windows Installer installation package:

· A Windows Installer feature and a unique Windows Installer component for each driver package. The component is configured to copy the driver package files to an application-specific location.

· An MsiDriverPackages custom table, in which each row specifies information about a driver package. For more information, see “MsiDriverPackages Custom Table Schema” later in this paper.

· The following Windows Installer custom actions, which are provided by the DIFxApp DLLs (DIFxApp.dll and DIFxAppA.dll):

· MsiProcessDrivers

An immediate execution custom action that controls the overall installation of driver packages. For more information about MsiProcessDrivers, see “Operation of MsiProcessDrivers” later in this paper.
· MsiInstallDrivers

A deferred execution custom action that installs a driver package. For more information about MsiInstallDrivers, see “Installing Driver Packages” later in this paper.

· MsiUninstallDrivers

A deferred execution custom action that uninstalls a driver package. For more information about MsiUninstallDrivers, see “Uninstalling Driver Packages” later in this paper.

· MsiRollbackInstall

A deferred execution custom action that reverses the changes to a system that are associated with installing a package. For more information about MsiRollbackInstall, see “Reversing System Changes” later in this paper.

· MsiCleanupOnSuccess

An immediate execution custom action that cleans up the registry after packages are successfully installed or uninstalled. For more information about MsiCleanupOnSuccess, see “Cleaning up After an Install or Uninstall” later in this paper.

Note

DIFxApp uses two custom action DLLs because, in version 1.1 of Windows Installer, a binary table custom action cannot call the Windows Installer database function MsiDoAction on the same binary table custom action. Consequently, MsiProcessDrivers must be implemented in a different DLL than MsiInstallDriverPackages, MsiUninstallDriverPackages, and MsiRollbackInstall.

In addition to the basic operations that install and uninstall driver packages, DIFxApp also supports the following operations:

· Managing the association between a driver package, the driver package service, and the applications that installed the driver package. This feature is only partially supported on Windows Longhorn. For more information, see “Associating Services, Driver Packages, and Applications” later in this paper.
· Adding an Add or Remove Programs entry that you can use to uninstall a driver package in Safe mode if the driver adversely affects system operation. Note that you can configure DIFxApp not to create this entry for a driver package by setting the corresponding flag value in the Flags entry value of the component that represents the driver package in an MsiDriverPackages custom table. DIFxApp does not support this feature on Windows Longhorn. For more information, see “Uninstalling a Driver Package by Using an Entry in Add or Remove Programs” and "MsiDriverPackages Custom Table Schema" later in this paper.
· Logging information about the progress of a driver installation or removal. For more information, see “Logging Information and Errors” later in this paper.

· Updating driver packages based on the component identifier of the driver package. For more information, see “Updating Versions” later in this paper.

· Suppressing the display of user dialog boxes and messages during installation. For more information, see “Support for Quiet Installations” later in this paper.

· Installing unsigned driver packages and driver packages with missing files in legacy mode. For more information, see "Installing Unsigned Driver Packages in Legacy Mode" later in this paper.

· Installing unsigned driver packages in debug mode for the purpose of testing the installation of the driver packages. For more information, see "Installing Unsigned Driver Packages for Testing Purposes" later in this paper.
· Removing files that were copied to a system from the driver store when a driver package was installed. For more information, see "Removing Files When Uninstalling a Driver Package".

Operation of MsiProcessDrivers

The MsiProcessDrivers custom action enumerates the MsiDriverPackages custom table and schedules the following deferred execution custom actions:
· Enumerates the MsiDriverPackages custom table to determine the driver package components for which to perform an install or an uninstall action. For information about this custom table, see “MsiDriverPackages Custom Table Schema” later in this paper.

· Schedules the MsiInstallDrivers custom action to install a driver package or schedules the MsiUninstallDrivers custom action to uninstall a driver package. MsiProcessDrivers uses a CustomActionData property to pass information about a driver package to MsiInstallDrivers or MsiUninstallDrivers. The install and uninstall operations are system changes that must be run as deferred execution custom actions. MsiInstallDrivers and MsiUninstallDrivers run in the execution context in which the user initiated the installation of the Windows Installer application package. For more information about the install and uninstall operations, see “Installing Driver Packages” and “Uninstalling Driver Packages” later in this paper.

· Schedules the MsiRollbackInstall custom action for each driver package being installed. MsiRollbackInstall is executed if the installation of a driver package fails. For more information, see “Reversing System Changes” later in this paper.

Installing Driver Packages

When a user installs a component in a Windows Installer installation package that represents a driver package, DIFxApp normally installs the driver package only if the driver package is not currently installed. However, if a user repairs an installed application by using the repair option provided by the application’s installation package, DIFxApp reinstalls the driver packages in the installation package.

The MsiInstallDrivers custom action performs the following when it installs a driver package. On Windows Longhorn, the MsiInstallDrivers custom action does only those operations that pertain to Plug and Play (PnP) function drivers.
· MsiInstallDrivers preinstalls the driver package files in the driver store. (The driver store is a repository for driver packages that is located on the system disk and is internally managed by DIFxApp, DPInst, and other DIFx tools).

· If the driver is PnP function driver, and the driver’s INF file is not already installed in the system INF directory, MsiInstallDrivers copies the driver’s INF file to the system INF file directory. DIFxApp changes the location of the media source to the location of the driver package files in the driver store.

· For class filter drivers,, MsiInstallDrivers processes the DefaultInstall and DefaultInstall.Services sections in the driver’s INF file to install the driver and the service. For information about these INF file sections, see “INF DefaultInstall.Services Section” and “INF DefaultInstall Section” in the WDK.

After installing a class filter driver, MsiInstallDrivers attempts to stop and restart devices that belong to the corresponding device setup class. When the PnP manager restarts a device in the device setup class, it adds the new class filter driver to the device’s driver stacks. If it is necessary to restart the computer to complete the installation, MsiInstallDrivers sets an internal flag that subsequently causes the MsiCleanupOnSuccess custom action to prompt the user to restart the computer.
· For a PnP function driver, MsiInstallDrivers installs the driver on devices if the driver is the best compatible driver for the device. DIFxApp also supports forcing the installation of a new driver on a device even if the driver currently installed on the device is a better match than the new driver.
To configure DIFxApp to force the installation of a new driver on a device, set the corresponding flag value in the Flags entry value of the component record that represents the driver package in an MsiDriverPackages custom table. For information about how to set the Flags entry value, see “MsiDriverPackages Custom Table Schema” later in this paper. For information about how PnP selects drivers for a device, see “How Setup Selects Drivers” in the WDK.
· MsiInstallDrivers adds the application to the driver-package-applications list that associates a driver package with the applications that install the driver package. For class filter drivers, MsiInstallDrivers also adds the driver package to the service-driver-packages list that associates a service with the driver packages that support the service. These features are not supported for PnP function drivers on Windows Longhorn. For more information about these associations, see “Associating Services, Driver Packages, and Applications” later in this paper.

· By default, MsiInstallDrivers adds an Add or Remove Programs entry that can be used to uninstall the driver package in Normal or Safe mode if the driver adversely affects system operation. However you can also configure DIFxApp not to create this entry for a driver package by setting the corresponding flag value in the Flags entry value of the component that represents the driver package in an MsiDriverPackages custom table. This feature is not supported on Windows Longhorn. For more information, see “Uninstalling a Driver Package by Using an Entry in Add or Remove Programs” and "MsiDriverPackages Custom Table Schema" later in this paper.

Uninstalling Driver Packages
The following apply to uninstalling driver packages:

· (Windows Server 2003, Windows XP, and Windows 2000) When a user uninstalls an application that is associated with a driver package, DIFxApp removes the association between the application and the driver package. If the driver package is associated with other installed applications, DIFxApp maintains those associations and does not uninstall the driver package. If the driver package is not associated with other applications, DIFxApp uninstalls a driver package as described in "Uninstalling PnP Function Drivers" and "Uninstalling Class Filter Drivers" later in this paper.
· (Windows Longhorn) DIFxApp does not maintain an association between an application and a PnP function driver package. DIFxApp always removes a PnP function driver package.
Uninstalling PnP Function Drivers

DIFxApp performs the following operations to uninstall a PnP function driver package:

· (Windows Server XP, Windows XP, and Windows 2000) Removes the association between the driver package and application.

· Removes the driver package INF file from the system INF file directory.

· Uninstalls the driver from all devices on which it is installed and then, from among all other drivers installed on a computer, installs the best compatible driver for each device. If there is no other compatible driver for a device, DIFxApp removes the device from the device tree.

· Removes the driver package from the driver store.

· (Windows Server XP, Windows XP, and Windows 2000 only) Removes the entry that represents the driver package in Add or Remove Programs.
Uninstalling Class Filter Drivers

When DIFxApp performs the following operations to uninstall a driver package for a class filter driver:
· Removes the driver package from the driver store.
· Updates the association between the service, the driver, and applications. For more information, see “Associating Services, Driver Packages, and Applications” later in this paper.
· Deletes the corresponding entry for the driver package in Add or Remove Programs.

· Removes the service name from the UpperFilters or LowerFilters entry value that is located under the registry key for the corresponding device setup class. DIFxApp also stops and restarts all devices in the device setup class.

DIFxApp completes the following operations if the driver package is currently installed for the service that it supports:
· If DIFxApp can reinstall another driver package that DIFxApp previously installed for the service, DIFxApp reinstalls the most recently installed driver package that it can install for the service.

· If DIFxApp cannot reinstall another driver package that DIFxApp previously installed for the service, DIFxApp warns the user of this situation and provides an option to retain the service. If the user elects to keep the service, DIFxApp does not remove the service; otherwise, DIFxApp removes the service. Whether or not the user elects to retain the service, DIFxApp removes the driver package from the driver store.

DIFxApp cannot reinstall a driver package for a service in the following two situations:

· The driver package is the only driver package in the driver store that supports the service, and the service was not originally installed by DIFxApp.

· There are other driver packages in the driver store that support the service, but DIFxApp could not successfully reinstall any of them for the service.

Associating Services, Driver Packages, and Applications
DIFxApp manages a driver-package-applications list that associates each driver package with the applications that install the driver package. To uniquely identify a driver package, DIFxApp uses the INF file and catalog file. To uniquely identify an application, DIFxApp uses the component identifier of the component record that represents a driver package in the component table of the application’s installation package. This feature is not supported for PnP function drivers on Windows Longhorn.
When a user installs an application that includes a driver package, DIFxApp adds the application to the driver-package-applications list for the driver package. When a user uninstalls the application, DIFxApp deletes the application from the driver-package-applications list. If the driver package is associated only with the application being uninstalled, DIFxApp uninstalls the driver package; otherwise, DIFxApp does not uninstall the driver package. This feature is not supported for PnP function drivers on Windows Longhorn.
For class filter drivers, DIFxApp also manages a service-driver packages list that associates a service with the driver packages that support the service. When DIFxApp installs a new driver package for a service, it adds the driver package to the service-driver packages list and updates the service with the driver package. When DIFxApp uninstalls a driver package, DIFxApp removes the driver package from the service-driver packages list. When DIFxApp uninstalls the currently installed driver package for a service, DIFxApp reinstalls the most recently installed driver package in the service-driver-packages list that it can install.

DIFxApp does not use a service-driver packages list to determine which driver package to install on a PnP device. Instead, DIFxApp uses the standard PnP and SetupAPI mechanisms to select and install the best compatible driver on a PnP device. For more information, see “Example PnP Device Installation” and “How Setup Selects Drivers” in the WDK.

For more information about how DIFxApp installs and uninstalls driver packages, see “Installing Driver Packages” and “Uninstalling Driver Packages” earlier in this paper.

Reversing System Changes

If the InstallDriverPackages custom action cannot successfully install a driver package, it reverses the system changes that it made while attempting to install the driver package. The system changes that InstallDriverPackages can reverse are the system changes that the UninstallDriverPackage custom action makes when it uninstalls a driver package. For more information about these system changes, see “Uninstalling Driver Packages” earlier in this paper.

In addition, the MsiRollbackInstall custom action uninstalls any drivers in the installation package that InstallDriverPackages installed before the failed driver-package installation.

If UninstallDriverPackages cannot successfully uninstall a driver package, DIFxApp reinstalls the driver package and then restores the system state that existed for the driver package before DIFxApp attempted to uninstall the driver package. If an uninstall failure occurs for a driver package after DIFxApp successfully uninstalls other driver packages in the same installation package, DIFxApp does not reinstall the driver packages that it already uninstalled. In addition, after an uninstall failure, if there are other driver packages that have not yet been uninstalled, DIFxApp attempts to uninstall them.
If a driver package is installed and a subsequent reinstall fails, DIFxApp does not reverse changes that it makes to the installation of the driver package during the failed reinstall. The net effect is that the state of the driver package installation is unchanged if a reinstall fails.
Cleaning Up After an Install or Uninstall

After a successful driver install or uninstall, the MsiCleanupOnSuccess custom action deletes temporary registry entries that were used to install or uninstall the driver, but are not required after the install or uninstall. MsiCleanupOnSuccess also performs the following:

· By default, during the installation of a PnP driver, if a device matching the driver is not connected to a computer, DIFxApp prompts the user to connect the device to the computer. You can configure DIFxApp not to prompt the user by setting the corresponding flag value in the Flags entry value of the component that represents the driver package in an MsiDriverPackages custom table.
· If the install or uninstall requires the user to restart the computer, it prompts the user to do so.

Uninstalling a Driver Package by Using an Entry in Add or Remove Programs

When Windows Installer installs an application, it adds an entry to Add or Remove Programs that represents the application. By default, DIFxApp also adds an entry to Add or Remove Programs that represents each driver package that is associated with the application. DIFxApp provides these entries to ensure that a driver package that adversely affects the system operation can be safely uninstalled in Normal or Safe Mode. However, you can configure DIFxApp not to create this entry for a driver package by setting the corresponding flag value in the Flags entry value of the component that represents the driver package in an MsiDriverPackages custom table. DIFxApp does not support this feature on Windows Longhorn. For more information, see "MsiDriverPackages Custom Table Schema" later in this paper. (Note that DIFxApp does not use Windows Installer to uninstall the driver package because Windows Installer cannot run when the system is in Safe Mode.)

If you do not need to uninstall a driver that is adversely affecting system operation, you should remove the applications with which the driver package is associated instead of using these entries to uninstall the driver package. When you remove the applications, DIFxApp uninstalls the driver package, removes the driver package’s entry in Add or Remove Programs, and removes the associations between the driver package and the applications.

To help the user to keep track of the associations between the drivers and applications, each driver package entry identifies the applications with which the driver is associated. Clicking the Remove button that is associated with a driver-package entry displays the names of the driver’s associated applications and advises the user to uninstall the applications, instead of using the entry to uninstall the driver package.

Logging Information and Errors

The DIFxApp custom actions use the Windows Installer database function MsiProcessMessage to send information about the progress of driver installation to Windows Installer. DIFxApp identifies the messages that it sends to Windows Installer by adding the prefix “DIFXAPP” to all messages. If you enable Windows Installer logging, Windows Installer adds these messages to the log file that you specified when you enabled logging. By examining the DIFXAPP messages in your log file, you can track the progress of driver installation and debug installation errors. In addition, you can use SetupAPI logging to track the operation of SetupAPI. For information about Windows Installer logging, see “Windows Installer Logging” in the Platform SDK.

Updating Versions

Update a driver package by creating a Windows Installer upgrade package that contains the new driver package. In the installation package, assign the new driver package the same component identifier that was assigned to the previous version of the driver package. For information about how to upgrade a Windows Installer installation package, see “Patching and Upgrades” in the “Windows Installer” section of the Windows Platform SDK.

Before DIFxApp installs a new driver package, it checks to see if the component identifier of the new driver package matches the component identifier of a previously installed driver package. If the component identifiers are identical and the new driver package is different than the existing driver package, DIFxApp uninstalls the existing driver package and installs the new driver package.
Support for Quiet Installations

By default, DIFxApp displays user dialog boxes and messages that are associated with installation. However, you can configure DIFxApp to install driver packages in a quiet-install mode that does not display any user dialog boxes or user messages.
To configure DIFxApp to install driver packages in quiet-install mode, use the /q command-line option with Msiexec.exe. The following is an example of a command line that includes the /q option:

msiexec /q <other installation-specific options>

For information about the command-line options for Msiexec.exe, see “Command-Line Options” in the “About Windows Installer” section of the Windows Platform SDK.
Installing Unsigned Driver Packages in Legacy Mode

By default, DIFxApp installs only signed driver packages and driver packages that do not have missing files. However, DIFxApp can be configured in legacy mode to install unsigned driver packages and driver packages that have missing files. Note, however, the following about legacy mode:
· Windows driver signing requirements apply to the installation of a driver package from the driver store. These requirements depend on the Windows version, the signature type, the driver package type, and the driver signing options set for a computer.

· If there are files missing which are required to install a driver package, Windows prompt the user to provide the location of the missing files in order to complete an installation.

To configure DIFxApp to operate in legacy mode, set the corresponding flag value in the Flags entry value of the component record that represents the driver package in an MsiDriverPackages custom table. For information about how to set the Flags entry value, see “MsiDriverPackages Custom Table Schema” later in this paper.
You can configure DIFxApp in the following ways to operate in legacy mode:
· Set the corresponding flag value in the Flags entry value of the component record that represents the driver package in an MsiDriverPackages custom table. For information about how to set the Flags entry value, see “MsiDriverPackages Custom Table Schema” later in this paper.

· Use the Windows Installer XML (WiX) toolset to create an installation package. In the corresponding WiX XML source file, set the DriverLegacy attribute to "yes" for the component that represents the driver package. For information about how to use the WiX toolset to create an installation package, see "Authoring a Windows Installer installation Package Using DIFxApp.wixlib" later in this paper.

Installing Unsigned Driver Packages for Testing Purposes
DIFxApp installs unsigned driver packages in legacy mode. For information about legacy mode, see "Installing Unsigned Driver Packages in Legacy Mode" earlier in this paper.

DIFxApp also installs unsigned driver packages if Windows is running in debug mode and the environment variable _DFX_INSTALL_UNSIGNED_DRIVER is set to 1. In this Windows configuration, DIFxApp does not verify that the package is signed and does not check for the presence of a catalog file for the package.

To configure a version of Windows to run in debug mode you must add the /debug switch to the boot entry for that Windows version in a computer's Boot.ini file and then restart the computer. After starting Windows in debug mode, set the environment variable _DFX_INSTALL_UNSIGNED_DRIVER to 1; DIFxApp will then install unsigned drivers.

The Boot.ini file is located in the root directory of the system volume (usually the C: drive) and should have the Hidden, Read-Only, and System file attributes set. Before you can edit the Boot.ini file, you must clear these attributes, and you should restore them after you edit the Boot.ini file. You can change the Boot.ini file attributes from a command line or by using Windows Explorer, as follows:

To configure the Boot.ini file attributes from a command prompt
To clear the attributes, type the following text at the command prompt:

attrib -s -h -r c:\boot.ini

To restore the Read-Only, Hidden, and System attributes after you edit the file, type the following at the command prompt:

attrib +h +r +s c:\boot.ini

To configure the Boot.ini file attributes in Windows Explorer

To clear the Boot.ini file attributes in Windows Explorer, complete the following steps:

1. In Windows Explorer, under the Tools menu, click Folder Options, and then click the View tab. Under Advanced Settings in the Hidden Files and Folders folder, select Show hidden files and folders, and then click OK.

2. In the Folders pane of Windows Explorer, click the root directory of the system volume (usually drive C), and then in the right pane, click the Boot.ini file. Under the Explorer File menu, click Properties. In the Properties dialog box, clear the Read-Only and Hidden check boxes, and then click OK.

To restore the Read-Only and Hidden attributes after you edit the Boot.ini file, set these properties again in the Properties dialog box for the Boot.ini file.

Configuring the /debug Option in a Boot.ini File

To configure a Windows version to run in debug mode, append the /debug switch to the boot entry for that Windows version under the [operating systems] section in the Boot.ini file. Each boot entry in the [operating systems] section corresponds to a boot option listed in the boot menu during a normal system startup. The following is an example of a typical Boot.ini file that contains a single boot entry for Windows XP:
[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP"

To edit the Boot.ini file, first clear the Read-Only, Hidden, and System file attributes, as described earlier in this section, and then use Notepad to append the /debug switch to the boot entry for the Windows version you want to run in debug mode. The following example shows the previous Boot.ini file after the /debug switch was appended to the boot entry for Windows XP:
[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP" /debug

Removing Files When Uninstalling a Driver Package

By default, DIFxApp does not remove the files that were copied from the driver store to a system as part of the installation of a driver package. For example, a driver binary file that was copied to the system32 or system\drivers directory. You can configure DIFxApp in the following two ways to remove these files from a system when a driver package is uninstalled:
· Set the corresponding flag value in the Flags entry value of the component record that represents the driver package in an MsiDriverPackages custom table. For information about how to set the Flags entry value, see “MsiDriverPackages Custom Table Schema” later in this paper.

· Use the Windows Installer XML (WiX) toolset to create an installation package. In the corresponding WiX XML source file, set the DriverDeleteFiles attribute to "yes" for the component that represents the driver package. For information about how to use the WiX toolset to create an installation package , see "Authoring a Windows Installer installation Package Using DIFxApp.wixlib" later in this paper.

Authoring a Windows Installer Installation Package That Uses DIFxApp
To author a Windows Installer installation package that uses DIFxApp, first create driver packages that comply with the DIFx requirements that are described in the white paper “Requirements for Driver Packages That Are Used with the Driver Install Frameworks (DIFx) Version 2.0 Tools”. DIFxApp requires:
· Compliance with the general driver package requirements that apply to all driver packages and are described in “Providing a Driver Package” in the WDK and the information about driver development at http://www.microsoft.com/whdc/hwdev/default.mspx.

· Compliance with the general driver package requirements that apply to each driver package type.

· Addition of DIFx-related entries to the INF file of a driver package, including an entry that specifies the driver package type, entries that identify the driver package to an end user, and an entry that specifies the name of the catalog file for a driver package.

· Signing shippable driver package with a Microsoft Windows Hardware Quality Labs (WHQL) signature or an Authenticode™ signature. Note, however, that DIFxApp can be configured in legacy mode to install unsigned driver packages on Windows 2000 and later. For information about legacy mode, see "Installing Unsigned Driver Packages in Legacy Mode" earlier in this paper. DIFxApp will also install unsigned driver packages in debug mode for testing purposes on Windows 2000 and later, as described in "Installing Unsigned Driver Packages for Testing Purposes" earlier in this paper.
To simplify authoring a Windows Installer installation package that uses DIFxApp, DIFxApp is provided as the Windows Installer merge module DIFxApp.msm. For information about using DIFxApp.msm to author a Windows Installer installation package, see "Authoring a Windows Installer Installation Package Using DIFxApp.msm" later in this paper.

DIFxApp is also distributed as the Windows Installer XML (WiX) toolset library file DIFxApp.wixlib and the two DIFxApp DLLs DIFxApp.dll and DIFxAppA.dll. For information about how to use DIFxApp.wixlib to author a Windows Installer installation package, see "Authoring a Windows Installer Installation Package Using DIFxApp.wixlib" later in this paper.
You can obtain the DIFxApp tool at http://www.microsoft.com/whdc/driver/install/DIFXApp.mspx.

Note that, by default, only a system administrator has sufficient system privileges to install a Windows Installer installation package that includes a driver package. However, DIFxApp supports the Windows Installer methods that an administrator can use to enable a nonadministrator user to install driver packages. For information about using these Windows Installer methods, see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/installing_a_package_with_elevated_privileges_for_a_non-admin.asp.
Authoring a Windows Installer Installation Package Using DIFxApp.msm

This section describes how to author a Windows Installer installation package that uses the merge module DIFxApp.msm. To understand this material, you must be familiar with how to create a Windows Installer installation package. For more information on creating Windows Installer installation packages, see “Windows Installer” in the Windows Platform Software Development Kit (SDK).

If you are creating a new application database, include DIFxApp.msm in the application database. If the application database already exists, use Orca.exe to merge DIFxApp.msm with the application database. Use Orca.exe, or any other Windows Installer table editor, to review the contents of the database. The items that DIFxApp.msm provides that you must customize are described in the following list of authoring steps and the "MsiDriverPackages Custom Table Schema" later in this paper.

After you create the driver packages, complete the following authoring steps to add the driver packages to a Windows Installer installation package:

1. For each driver package, add a Windows Installer feature to the installation database. Handle the driver package in the same way as any other feature. Whether the driver package is required or optional depends on the application. Set a condition of the feature to “VersionNT>=500” to ensure that the driver package is installed only on systems running Windows 2000 and later.

2. For each driver package feature that was created in the previous step, add the Windows Installer component to the installation database that represents the driver package. The component that represents the driver package must have a unique component identifier, represent only one driver package, and include the driver package’s INF file. Although you can distribute the files in a driver package among more than one component, the component that represents the driver package is the one that contains the package’s INF file.

Although DIFxApp does not require it, you can use the same component identifier for different instances of the same driver package in different installation packages. If you do this, it simplifies using Windows Installer versioning to determine if a feature should be updated. DIFxApp also supports using different component identifiers for different instances of the same driver package in different installation packages.

3. Add the driver package files to the installation package. Configure the components that are associated with each driver package to copy their files to a unique directory on the user's computer. For example, Microsoft recommends that each component copy its files to Program Files\Company Name\Application Name\Unique Driver Package Directory. Note that DIFxApp requires that you use a unique directory for each driver package. Otherwise, DIFxApp is not guaranteed to handle them properly and the results are unpredictable.

4. Include DIFxApp.msm in the installation package. If you are creating a new installation database, include DIFxApp.msm in the installation database. If the application database already exists, you must use Orca.exe to merge DIFxApp.msm with the application database. (Do not use Msidb.exe, Msimerg.exe, or any other tool to merge DIFxApp.msm with your application database.) The following command line shows how to use Orca.exe to merge DIFxApp.msm with the application database:
Orca -f <Feature Name> -m DIFxApp.msm -c <Application database name>

Orca.exe requires that you supply a <Feature name> parameter. Because DIFxApp.msm is not feature-specific, you can use the name of any existing feature in the application database. Alternatively, you can create a new feature specifically for this purpose and supply the name of this new feature.

Note DIFxApp.msm includes a _Validation table, some of whose entries are populated with default values. The default entry values supplied by DIFxApp.msm might be different than the corresponding entry values supplied in the _Validation table that is included in the application database. If an entry value supplied by DIFxApp.msm is different than the entry value supplied by the application database, Orca.exe might not be able to create a merged database because of merge conflict errors. If merge conflict errors occur with Orca.exe, you can use the "-!" flag, which configures Orca.exe to automatically resolve merge conflict errors. However, if the merged application requires that an entry have a specific value that Orca.exe does not set by using the the "-!" flag, you must supply the required entry value. Finally, note that a tool other than Orca.exe which can generate a merged database might also report merge conflict errors that must be resolved before the tool can generate a merged database.

Merging DIFxApp.msm with an installation database adds the following to the installation database:

· An empty MsiDriverPackages custom table.

· The MsiProcessDrivers and MsiCleanupOnSuccess immediate execution custom actions.

· The MsiInstallDrivers, MsiUninstallDrivers, and MsiRollbackInstall deferred execution custom actions.

5. For each driver package, use Orca.exe, or another Windows Installer table editor, to add a record to the MsiDriverPackages custom table that identifies the component that includes the package’s INF file. For information about the MsiDriverPackages custom table, see “MsiDriverPackages Custom Table Schema” later in this paper.

The Orca.exe and Msidb.exe tools are provided in the Windows Installer SDK.

Authoring a Windows Installer installation Package Using DIFxApp.wixlib
You can use Windows Installer XML (WiX) toolset version 2 or later to create a Windows Installer installation package that uses DIFxApp to install driver packages. To do this, you must know how to create a Windows Installer installation package and how to use the WiX toolset. The WiX toolset is a Microsoft-sponsored community development project that has been released as part of the Microsoft Shared Source Initiative. For more information about the WiX toolset, see the http://www.microsoft.com/resources/sharedsource/Licensing/WiX.mspx Web site and for information about creating Windows Installer installation packages, see “Windows Installer” in the Windows Platform Software Development Kit (SDK).
To author a Windows Installer installation package using DIFxApp.wixlib and the DIFxApp DLLs, do the following steps:
1. Create the WiX XML source file, for example AbcApp.wxs, that describes the application and associated driver packages. To add a driver package to AbcApp.wxs, include a Component XML element to describe the driver package and set the following driver-specific attributes of the Component element. The presence of at least one of these attributes for a Component element implicitly identifies the corresponding component as a DIFxApp-installable driver package. If there is one DIFxApp-installable driver package defined in a WiX XML source file, the link operation described in step 3 automatically adds the DIFxApp custom actions to the Windows Installer installation file.
DriverDeleteFiles

If set to "yes", configures DIFxApp to delete binary files that were copied to the system from the driver store when a driver package was installed. If this attribute is set to "no" or not present, DIFxApp does not remove these files from a system. Note that configuring DIFxApp to delete these files is controlled by the Flags entry value of the component that represents the driver package in the MsiDriverPackages custom table. Setting DriverDeleteFiles to "yes" sets the corresponding bit in the Flags entry value. Setting DriverLegacy to "no" clears the corresponding bit in the Flags entry value. If this attribute is not present, DIFxApp uses a default value of "no".

DriverForceInstall

If set to "yes", configures DIFxApp to force the installation of a Plug and Play (PnP) driver on a device, even if the driver currently installed on the device is a better match than the new driver. If this attribute is set to "no" or not present, DIFxApp only installs a new PnP driver on a device if the new driver is a better match than the currently installed driver. Note that configuring DIFxApp to force an installation of a driver package is controlled by the value of the Flags entry value of the component that represents the driver package in the MsiDriverPackages custom table. Setting DriverForceInstall to "yes" sets the corresponding bit in the Flags entry value. Setting DriverForceInstall to "no" clears the corresponding bit in the Flags entry value. If this attribute is not present, DIFxApp uses a default value of "no".
DriverLegacy

If set to "yes", configures DIFxApp to install unsigned driver packages and driver packages with missing files. For more information, see "Installing Unsigned Driver Packages in Legacy Mode" earlier in this paper. If this attribute is set to "no" or not present, DIFxApp will install only signed driver packages. Note that configuring DIFxApp to install unsigned drivers is controlled by the Flags entry value of the component that represents the driver package in the MsiDriverPackages custom table. Setting DriverLegacy to "yes" sets the corresponding bit in the Flags entry value. Setting DriverLegacy to "no" clears the bit in the Flags entry value that configures DIFxApp to install unsigned driver packages. If this attribute is not present, DIFxApp uses a default value of "no".
DriverPlugAndPlayPrompt

If set to "yes", configures DIFxApp to prompt the user to connect a PnP device to a computer if a device matching a PnP function driver being installed is not connected to a computer. If this attribute is set to "no", DIFxApp does not display this prompt. Note that displaying this prompt is controlled by the value of the Flags entry value of the component that represents the driver package in the MsiDriverPackages custom table. Setting DriverPlugAndPlayPrompt to "yes" clears the corresponding bit in the Flags entry value. Setting DriverPlugAndPlayPrompt to "no" sets the corresponding bit in the Flags entry value. If this attribute is not present, DIFxApp uses a default value of "yes".

DriverAddRemovePrograms

If set to "yes", configures DIFxApp to add an Add or Remove Programs entry that represents the driver package. If this attribute is set to "no", DIFxApp does not add an Add or Remove Programs entry that represents the driver package. Note that adding an Add or Remove Programs entry is controlled by the value of the Flags entry value of the component that represents the driver package in the MsiDriverPackages custom table. Setting DriverAddRemovePrograms to "yes" clears the corresponding bit in the Flags entry value. Setting DriverAddRemovePrograms to "no" sets the corresponding bit in the Flags entry value. If this attribute is not present, DIFxApp uses a default value of "yes".

DriverSequence

Sets the Sequence entry for the component that represents the driver package in the MsiDriverPackages custom table. If this attribute is not present, DIFxApp uses a default value of zero.

The following is an example a Component element that sets DriverForceInstall to "no" and DriverSequence to zero. Because DriverPlugAndPlayPrompt and DriverAddRemovePrograms are not present, these attributes are set to "yes" by default.

<Component Id="C__70708CBF27634C5FB5295CDE6954A1BB" Guid="953D30C9-5CCC-D5AE-3AF3-6CF9823200B0" DriverForceInstall="no" DriverSequence="0">
2. Use the WiX candle tool to create the AbcApp.wixobj file from the AbcApp.wxs file, the application files, and the driver package files. For example:

candle AbcApp.wxs

3. Use the WiX light tool to link AbcApp.wixobj file, DIFxApp.wixlib, DIFxApp.dll, and DIFxAppA.dll. The output of the WiX light tool is the Windows Installer installation file for the Abc application. DIFxApp.wixlib, DIFxApp.dll, and DIFxAppA.dll must be located in the same directory. For example:

light <path>\AbcApp.wixobj <path>\difxapp.wixlib -out <path>\AbcApp.msi

The linking step adds the DIFxApp custom actions to the Windows Installer installation file. DIFxApp.dll and DIFxAppA.dll are added to the binary table and the custom actions that the two DLLs provide are added to the custom action table. In addition, MsiProcessDrivers and MsiCleanupOnSuccess are added to the InstallExecuteSequence table in the correct sequence.
MsiDriverPackages Custom Table Schema

To simplify authoring an installation package, DIFxApp is provided as the merge module DIFxApp.msm, which includes an empty MsiDriverPackages custom table. When you merge DIFxApp.msm with an application database, DIFxApp.msm adds, among other things, the MsiDriverPackages custom table to the application database. After you merge DIFxApp.msm with an application database, add one record to MsiDriverPackages custom table for each driver package component that you add to the application database.

The following table specifies the schema of the MsiDriverPackages custom table.

	Column
	Type
	Key
	Nullable
	Description

	· Component
	· S255
	· No
	· No
	· Component that represents a driver package.

	· Flags
	· i4
	· No
	· No
	· Driver package flags.

	· Sequence
	· i4
	· No
	· Yes
	· Installation sequence number.

Column Descriptions

The following descriptions correspond to the items listed in the first column in the previous table:
Component

Specifies the value of the Component entry in a Component table that identifies the component that represents a driver package. The component that represents a driver package includes the package’s INF file. This value is the primary key of the component that represents the driver package. The data type is a string whose length is less than or equal to 255 characters.

Flags

Specifies a bitwise OR of one or more the following flags:
	Value
	Definition

	· 0
	· Not set (default).

	· 1
	· By default, DIFxApp does not install a PnP function driver on a device if the driver currently installed on a device is a better match for the device than the new driver. This flag configures DIFxApp to force the installation of a new PnP function driver on a device, even if the driver currently installed on a device is a better match than the new driver.

	· 2
	· By default, during the installation of a PnP function driver, if a device matching the driver is not connected to a computer, DIFxApp prompts the user to connect the device to the computer. This flag configures DIFxApp not to display this prompt.

	· 4
	· By default, DIFxApp adds an Add Or Remove Programs entry that represents the driver package that this component represents. This flag configures DIFxApp not to create an Add Or Remove Programs entry for the component. DIFxApp does not support this feature on Windows Longhorn.

	· 8
	· By default, DIFxApp does not install unsigned driver packages and driver packages that have missing files. This flag configures DIFxApp to install unsigned driver packages and driver packages that have missing files. For more information, see "Installing Unsigned Driver Packages" earlier in this paper.

	· 16
	· By default, when DIFxApp uninstalls a driver package, DIFxApp does not remove the binary files that are copied to the system when it installed the driver. This flag configures DIFxApp to remove these binary files. DIFxApp removes a binary file from the system only if the binary file is identical to the corresponding binary file in the driver store. This flag should be used with caution. It should be used only if the caller can verify that a binary file in the system is not required by any other driver package or application.

	· Other value
	· Invalid. This is a fatal installation error. DIFxApp does not install the component, and uninstalls any components in the same installation package that were installed before this component.

Sequence

Specifies an optional installation sequence number. DIFxApp installs the driver packages in an installation package in the order of increasing sequence numbers. The same sequence number can be used for more than one driver; however, the order in which packages with the same sequence number are actually installed cannot be determined. If a specific order is not required for any of the drivers, set the sequence number of the driver packages to zero.

Call to Action and Resources

Call to Action

For driver package providers: Use Microsoft® Windows® Driver Install Frameworks for Applications (DIFxApp) to install driver packages that are associated with applications in a Windows Installer installation package.

If you have questions about DIFxApp, send an e-mail message to hwux@microsoft.com.

Resources

Microsoft Windows Driver Install Frameworks

http://www.microsoft.com/whdc/hwdev/driver/hwuxtools.mspx
Designed for Microsoft Windows XP Application Specification

http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx
Microsoft Hardware and Driver Developer Information

http://www.microsoft.com/whdc/hwdev/default.mspx
Microsoft Platform Software Development Kit (SDK)

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/default.htm
Microsoft Windows Driver Development Kit (WDK)

http://www.microsoft.com/whdc/devtools/ddk/default.mspx
Microsoft Windows Logo Program System and Device Requirements, Version 2.1a

http://www.microsoft.com/whdc/winlogo/downloads.mspx
Windows Application Compatibility Toolkit

http://msdn.microsoft.com/compatibility/
Microsoft Windows XP Hardware Compatibility Test Kit, Version 12.0
http://www.microsoft.com/whdc/devtools/HCTKit.mspx
Microsoft Windows Driver Tools

http://www.microsoft.com/whdc/hwdev/driver/drvtools.mspx

Improving Driver Installation in Windows

http://www.microsoft.com/whdc/hwdev/driver/setup/installtools.mspx

© 2004 Microsoft Corporation. All rights reserved.

[image: image1.png]